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Heat and mass transport in nonhomogeneous random velocity fields

Roberto Mauri*
Department of Chemical Engineering, DICCISM Universita` di Pisa, 56126 Pisa, Italy

~Received 7 August 2003; published 18 December 2003!

The effective equation describing the transport of passive tracers in nonsolenoidal velocity fields is deter-
mined, assuming that the velocity fieldU(r ,t) is a function of both positionr and timet, albeit remaining
locally random. Assuming a strong separation of scales and applying the method of homogenization, we find

a Fickian constitutive relation for the coarse-grained particle flux, as the sum of a convective part,VEc̄, and a

diffusive term,2Ds
•“ c̄, whereVE is the Eulerian mean tracer velocity,c̄ the average particle concentration,

andDs the effective diffusivity. The latter can be written asDs(r ,t)5D0I1D(r ,r ,t), whereD0 is the molecu-
lar diffusivity, I the unit dyadic andD(r1 ,r2 ,t) the cross diffusion dyadic. Conversely, the Eulerian mean

velocity VE(r ,t) is the sum of the microscale mean tracer velocityV̄(r ,t) and a particle drift velocity,
Vd(r ,t)52@(]/]r2)•DT(r ,r2 ,t)# r25r , which depends on the nonhomogeneity of the velocity field at the
macroscale. The microscale mean particle velocity, in turn, is the sum of the mean fluid velocity and the
ballistic tracer velocity, which is due to the local nonuniformity of the concentration field and is therefore
structurally different from the tracer drift velocity. In the limit of large Peclet numbers,Ds coincides with the
self-diffusion dyadic, as it measures the local temporal growth of the mean square displacement of a tracer
particle from its average position. In this case, the motion of a tracer particle is a random process in the manner
of Stratonovich, where the smoothly varying mean tracer velocity equals the microscale mean tracer velocity
and the fluctuating term is described through the cross diffusion dyadicD(r1 ,r2 ,t).

DOI: 10.1103/PhysRevE.68.066306 PACS number~s!: 47.27.2i, 47.55.2t, 44.10.1i
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I. INTRODUCTION

The objective of this paper is to determine the constitut
relation for the heat or mass flux in random velocity field
Applications can be found in the heat and mass transpo
packed beds or in turbulent mixers where the randomnes
the velocity field is due, in the first case, to the rando
distribution of the bed particles and, in the second case
the turbulent nature of the flow. As is customary in the
cases, our primary interest is not the detailed knowledge
the microscale process, but rather its description on a co
scale, where we expect that it is described through
effective-medium equation and constitutive relation in ter
of effective parameters~such as the effective heat and ma
diffusivities!, which depend on the global characteristics
the microscale velocity field.

Previously, this problem has been studied for soleno
velocity fields, assuming that the velocity field is locally ra
dom and macroscopically both uniform and stationary.
this case, the transport of passive tracers has been show
be described through a Fickian constitutive relation, as
sum of a convective part, characterized by the average fl
velocity, and a diffusive component, with an effective diff
sivity that depends on the microscopic, local characteristi
the flow field. For example, when the randomness of
velocity field is due to turbulence, the average tracer velo
equals the fluid mean velocity, while the effective, or ed
diffusivity is the time integral~when it is finite! of the fluid
velocity autocorrelation function~see Monin and Yaglom@1#,
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and references therein!. More recently, this problem wa
studied also by Biferaleet al. @2# and by Castiglioneet al.
@3,4#, who analyzed standard and anomalous transport in
compressible flow using multiscale techniques. Similar
sults are found in the related process of convection of a p
sive tracer by a fluid flowing through a random mediu
even if, as mentioned above, in this case the randomnes
the flow is provided not by turbulence~in fact, the fluid flow
can very well be laminar!, but by its interaction with the
dispersed particles~see Refs.@5–13#!. Another similar case
is the transport of Brownian particles convected by a non
mogeneous laminar flow field, where, again, an effective,
called Taylor-Aris, diffusivity arises as the result of the i
teraction between the molecular diffusion of the particles a
the nonhomogeneity of the flow field~see Refs.@14–17#!.

In this work, we will remove the assumptions that th
flow field is solenoidal and that it is macroscopically hom
geneous and stationary. Nonsolenoidal velocity fields
only refer to compressible fluids, although this is the ca
that we will consider here; they also apply to suspensions
particles where either particle-particle interactions or parti
inertial forces cause the particle velocity to differ from th
local fluid velocity. Nonsolenoidal flow fields were studie
by Vergassola and Avellaneda@18#, who found that in this
case the mean tracer velocity differs from the mean fl
velocity by a term that accounts for what they call ballis
transport, due to the nonuniformity of the concentration fie
at the microscale. An identical phenomenon is observed
in the transport of chemically reacting solute tracers,
shown by Shapiro and Brenner@19# and Mauri@20# ~see the
following section!. More important is our other assumptio
that the flow field is macroscopically nonhomogeneous a
nonstationary, a condition that can be due, for example
©2003 The American Physical Society06-1
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the characteristics of the unperturbed flow field, as in
case of time-dependent turbulent shear flow, or to the n
uniform properties of the random flow field, as in the flo
through a porous medium with varying porosity, so that
can describe conditions that are more readily found in pr
tical applications

The content of this work is organized as follows. Aft
formulating the problem and establishing the basic sca
~see Sec. II!, in Secs. III and IV we describe the method
solution and derive the effective constitutive equation. T
case of large Peclet number is studied in detail in Sec
while, eventually, in Sec. VI, the main results of this wo
are summarized and discussed.

II. GOVERNING EQUATION AND SCALING

Consider the convection of Brownian tracers in a veloc
flow field U(r ,t). Neglecting inertia and all interaction
among the particles, the tracer molar concentrationc(r ,t) at
location r and time t satisfies the following convection
diffusion equation:

]c

]t
1“•~Uc!2D0¹2c50, ~1!

where D0 is the tracer molecular diffusivity, to be solve
with a given initial condition,

c~r ,0!5c0~r !. ~2!

The velocity fieldU(r ,t) is nonsolenoidal~i.e., the fluid is
compressible!, with known statistical properties. In particu
lar, it has the mean value

^U~r ,t !&05Ū~r ,t !5U0ū~r ,t ! ~3!

and Lagrangian velocity autocorrelation function

^Ũ~r ,t !Ũ~r1 r̃ ,t1 t̃ !&05U0
2f~r ,t, t̃ !, ~4!

whereU0 denotes a typical value of the fluid velocity, th
brackets indicate ensemble average,Ũ5U2Ū is the velocity
fluctuation, whiler1 r̃ is the position, at timet1 t̃ , of the
fluid particle which, at timet, is located atr . Equations~3!
and ~4! indicate that the velocity field is not stationary
time, nor homogeneous in space. Clearly, although the
grangian velocity autocorrelation can be extracted from
merical simulations of fluid flows in turbulent mixers or
packed beds, a direct experimental measurement of this f
tion is not feasible, in general. However, it should be
marked that, since the Eulerian and Lagrangian probab
distribution functions of the velocity fluctuations are relat
to one another~see Ref.@21#!, it is possible to determine th
Lagrangian velocity autocorrelation function from its Eul
rian counterpart, which is more easily measurable.

Rewriting the governing equation~1! as

]c

]t
1U•“c1rc5D0¹2c, ~5!
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where r 5“•U, we see that fluid compressibility plays th
role of a first-order chemical reaction. Therefore, when
random velocity field is stationary in time and homogeneo
in space, mass transport in compressible flow fields is a
ticular case of the transport of chemically reacting trac
~see Shapiro and Brenner@19#, Mauri @20#, Edwardset al.
@22#!.

Here, we assume that the mean velocity field has cha
teristic lengthL and characteristic timetL5L2/D0, while the
velocity autocorrelation function decays over a length sc
,5eL and time scalet,5,2/D05e2tL , with e!1. There-
fore, the geometry of the problem is characterized by t
length scales,, andL, and two time scales,t, andtL , indi-
cating the typical correlation length and time of the veloc
field at the microscale and macroscale, respectively. In
following, we will assume that Pe5O(1), where Pe
5,U0 /D0 is the microscale Peclet number. This assumpt
means that convection and diffusion balance each othe
the microscale and therefore convection dominates diffus
at the macroscale, as PeL5LU0 /D05O(1/e).

Clearly, this problem, in principle, could be solved e
actly, provided that the velocity field were known. In realit
the velocity field is known only statistically and, in additio
we are not interested in the detailed knowledge of the
croscale process, but rather in its description on a coa
scale. In fact, the macroscopic effective equations describ
the motion of the test particle will be determined using
multiple-scale perturbation analysis otherwise denoted
method of homogenization~Bensoussanet al. @6#, Sanchez-
Palencia@23#!. The main idea is that the effective equation
expected to arise naturally from Eq.~1! through a regular
perturbation analysis in terms of the small parametee
5,/L. Accordingly, each quantity can be represented se
rately in terms of a microscale coordinater̃ , with u r̃ u
5O(,) and of a macroscale position vectorr , with ur u
5O(L)5O(,/e). In particular, the gradient operator“ can
be expanded in terms ofe as

,“5
]

]x
1e

]

]X
, ~6!

where X5r /L and x5 r̃ /, are nondimensional macrosca
and microscale variables, respectively.

A similar scaling applies also to time, obtaining,

,2

D0

]

]t
5

]

]u
1e

]

]Q1
1e2

]

]Q2
, ~7!

whereQ2 , Q1, andu measure time at the macroscale, m
soscale, and microscale, respectively.

In the following, we will assume that any functionf (x,u)
is ergodic, that is, its~microscale! volume and time integra
coincides with its ensemble average. This assumption der
from the fact that the fluctuations of the velocity field res
from a very large number of interactions and therefore,
cording to the central limit theorem, they must be loca
random, i.e., homogeneous in space and stationary in tim
the microscale~see comments in Ref.@24#!. In the different,
albeit related, context of suspension flow, Marchioro and A
6-2
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rivos @25# explicitly demonstrated that, although the syste
of equations describing the particle motions is determinis
the particle displacements present a Gaussian distribu
and therefore constitute a random process.

Substituting Eqs.~6! and ~7! into Eq. ~1!, we obtain

e2
]c

]Q2
1e

]c

]Q1
1

]c

]u
1PeF ]

]x
•~uc!1e

]

]X
•~uc!G

5S ]

]x
1e

]

]XD 2

c, ~8!

where u(X,x,Q,u)5U/U0 represents the nondimension
fluid velocity, withQ5(Q1 ,Q2). This governing equation is
subjected to the initial condition~2!,

lim
t→0

c~e,X,x,t !5c0~X!, ~9!

where we have assumed that the initial concentrationc0 is a
smooth function of position. Generalization to the ca
where c0 depends onx, and therefore one, does not add
anything to our physical understanding of the phenomen

In the following, we will apply a multiple scale analys
to derive the effective equations satisfied by the system.
key idea here is to expand the probability distribution as
following power series:

c~e,X,x,Q,u!5 (
n50

enc(n)~X,x,Q,u!, ~10!

substitute it into the governing equation~8! and then collect
equal powers ofe.

When, as in this case, some of the leading-order probl
turn out to be ill posed, this multiple scale technique has
be applied with special care. Similar problems have b
encountered in the past, and were solved either by ‘‘subtr
ing’’ the dominant term from the governing equation a
‘‘summing’’ it back at the end~Rubinstein and Mauri@11#!,
‘‘warping’’ time scales and length scales~Mauri @20#!, or
expanding the independent variables in time as well as
space~see Mauri@13#, Mazzino@26#, and references therein!.
Here, as indicated in the expression~7!, we adopt the last of
these methods.

III. MULTIPLE SCALE ANALYSIS

A. Leading-order terms

At leading,O(1) order, substituting Eq.~10! into ~8!, we
obtain

]c(0)

]u
1Pe

]

]x
•~uc(0)!2

]2c(0)

]x2
50, ~11!

with initial condition ~9!,

lim
Q,u→0

c(0)~X,x,Q,u!5c0~X!. ~12!

The solution of Eq.~11! is trivially,
06630
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c(0)~X,x,Q,u!5A0~X,x,Q,u!c̄~X,Q!, ~13!

with c̄(X,0)5c0(X), while A0(X,x,Q,u), representing the
microscale probability function, can be determined solvi
Eq. ~11!, with initial conditionA0(X,x,Q,u50)51. For so-
lenoidal flow fields, this problem admits the trivial solutio
A051. Note thatA0 is normalized as

^A0~X,x,Q,u!&51, ~14!

where the bracket indicates microscale averaging both
space and in time for any functionf (X,x,Q,u), i.e.,

^ f &~X,Q!5E E f ~X,x,Q,u!dxdu. ~15!

In addition, using the normalization condition ofc, to-
gether with the following additional constraints, which w
arise spontaneously later,

^c(nÞ0)~X,x,Q,u!&50, ~16!

we find the normalization condition

^c~X,x,Q,u!&5^c(0)~X,x,Q,u!&5 c̄~X,Q!. ~17!

Although these additional assumptions are not necessar
the development of our analysis, they do remove the deg
of arbitrariness in the definition~10! of c( i ) and greatly sim-
plify our results. In any case, although these conditions
not unique, any other condition that we may choose in pl
of Eq. ~17! would lead, eventually, to the same final resu
~Mauri, 1991!.

B. First-order terms

At first, O(e) order, we obtain

]c(1)

]u
1Pe

]

]x
•~uc(1)!2

]2c(1)

]x2

52
]c(0)

]Q1
2Pe

]

]X
•~uc(0)!12

]

]x
•

]c(0)

]X
, ~18!

subjected to the initial condition~9!,

lim
Q,u→0

c(1)~X,x,Q,u!50. ~19!

Now, apply the solvability condition to Eq.~18!, taking the
volume and time integral over thex and u variables and
considering that the left-hand side does not contribute
cause the volume integral of the gradient of any locally ra
dom function is identically zero. Finally, we obtain,

] c̄

]Q1
52Pe

]

]X
•~v0c̄!, ~20!

where

v0~X,Q!5^u~X,x,Q,u!A0~X,x,Q,u!& ~21!
6-3
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is the leading-order mean tracer velocity, that is, the velo
that the suspended particles~with the given particle distribu-
tion A0) would have if they moved with the same speed
the fluid’s.

The main conclusion that we draw from Eq.~21! is that
the fluid compressibility determines a nonuniform concen
tion field at the microscale, which, in turn, causes t
leading-order mean tracer velocityv0 to differ from the mean
fluid velocity ū, defined as

ū~X,Q!5^u~X,x,Q,u!&. ~22!

If fact, Eq. ~21! can be rewritten as

v05ū1v0
b , ~23!

where

v0
b~X,Q!5^u~X,x,Q,u!@A0~X,x,Q,u!21#& ~24!

coincides with the ballistic velocity, as is defined by Verga
sola and Avellaneda@18#. This result is identical to the
leading-order term obtained by Shapiro and Brenner@19# and
Mauri @20#, who studied the transport of chemically reacti
tracers, with the reaction speed taking the place of the fl
velocity divergence@see Eq.~5! and related comments#.

Now let us consider Eq.~18!, assuming that its solution
can be expressed as

c(1)~X,x,Q,u!5A1~X,x,Q,u!c̄~X,Q!

2
]

]X
•@B~X,x,Q,u!c̄~X,Q!#. ~25!

Substituting Eq.~20! and ~25! into Eq. ~18!, we see that the
function A1(X,x,Q,u) and the vector functionB(X,x,Q,u)
satisfy the following problems:

]A1

]u
1Pe

]

]x
•~uA1!2

]2A1

]x2
52

]A0

]Q1
2Pe

]

]x
•S B•

]

]X
uD

2Pev0•
]A0

]X
, ~26!

and

]B

]u
1Pe

]

]x
•~uB!2

]2B

]x2
5PeũA022

]A0

]x
, ~27!

where ũ(X,x,Q,u)5u(X,x,Q,u)2v0(X,Q) is the velocity
fluctuation. These equations must be solved with initial c
ditions

A1~X,x,Q,u50!50, B~X,x,Q,u50!50, ~28!

and imposing the normalization condition~17!, i.e.,

^A1~X,x,Q,u!&50; ^B~X,x,Q,u!&50. ~29!
06630
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C. Second-order terms

Now we proceed to the second,O(e2) order, obtaining

]c(2)

]u
1Pe

]

]x
•~uc(2)!2

]2c(2)

]x2

52
]c(0)

]Q2
2

]c(1)

]Q1
2Pe

]

]X
•~uc(1)!12

]

]X
•

]c(1)

]x

1
]2c(0)

]X2
, ~30!

subjected to the initial condition~9!,

lim
Q,u→0

c(2)~X,x,Q,u!50. ~31!

Applying the solvability condition to this equation, i.e
integrating over thex andu variables, we obtain

] c̄

]Q2
52Pe

]

]X
• j̃ , ~32!

where

j̃ ~X,Q!52
1

Pe

] c̄

]X
~X,Q!1^uc(1)&~X,Q! ~33!

is the fluctuation-induced particle flux. Substituting Eq.~25!
into Eq. ~33! and rearranging, we can express the parti
flux as follows:

j̃ 5~v1
b1vd!c̄2ds

•

] c̄

]X
. ~34!

Here,v1
b is the velocity that the suspended particles, with t

given particle distributionA1, would have if they moved
with the same speed as the fluid’s,

v1
b~X,Q!5^uA1&. ~35!

Also, vd and ds are fluctuation-induced tracer drift velocit
and diffusivity, respectively, which, considering the norma
ization condition~29!, can be written as follows:

vd52 K uS ]

]X
•BD L 52 K ũS ]

]X
•BD L , ~36!

and

ds5
1

Pe
I1^u•B&5

1

Pe
I1^ũB&, ~37!

whereI denotes the unit dyadic.
6-4
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IV. THE EFFECTIVE EQUATION

Substituting Eqs.~20! and~32!–~37! into Eq. ~7!, we ob-
tain the Fokker-Planck equation,

L2

D0

] c̄

]t
1Pe

]

]X
• j̄ 50, ~38!

with the following constitutive relation for the coarse
grained non-dimensional particle fluxj̄ (X,Q),

j̄ 52
1

Pe

] c̄

]X
1 K uS 1

e
c(0)1c(1)D L 5

1

e
v0c̄1 j̃ . ~39!

Therefore we obtain

j̄ 5vEc̄2ds
•

] c̄

]X
, ~40!

wherevE is the Eulerian mean particle velocity,

vE5
1

e
v̄1vd, ~41!

denoting the sum between the fluctuation-induced part
drift velocity vd @see Eq.~36!# and the microscale mea
tracer velocityv̄, with

v̄5v01ev15^u~A01eA1!&. ~42!

The microscale mean tracer velocity can also be written

v̄5ū1vb, ~43!

wherevb5v0
b1ev1

b is the ballistic tracer velocity~Vergassola
and Avellaneda@18#!, expressing the difference between t
microscale mean tracer velocity and the mean fluid veloc
due to the nonhomogeneous concentration field at the
croscale.

The particle drift velocityvd of Eq. ~36! can be rewritten
as

vd~X,Q!52F ]

]X2
•dT~X,X2 ,Q!G

X25X

, ~44!

with (dT) i j 5dji . Here,d(X1 ,X2 ,Q) is the following cross-
diffusion dyadic:

d~X1 ,X2 ,Q!5^ũ~X1 ,x,Q,u!B~X2 ,x,Q,u!&, ~45!

with

ds~X,Q!5
1

Pe
I1d~X,X,Q!. ~46!

Note that, from its definition~44!, the drift velocityvd is due
to macroscale nonhomogeneities and therefore it is struc
ally different from the ballistic velocityvb, which depends
on microscale nonhomogeneities instead.

The constitutive relation~40! can also be written as
06630
le
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j̄ 5vLc̄2
]

]X
•~dsc̄!, ~47!

wherevL is the Lagrangian mean particle velocity, which
related to its Eulerian counterpart through the relationvL
5vE1“•ds. Therefore, considering that

d

dx
D~x,x!5F ]

]y
D~y,x!G

y5x

1F ]

]z
D~x,z!G

z5x

, ~48!

we can express the Lagrangian mean particle velocity as

vL~X,Q!5
1

e
v̄~X,Q!1F ]

]X1
•d~X1 ,X,Q!G

X15X

. ~49!

In particular, when the flow field is solenoidal,

]

]X
•u5

]

]x
•u50, ~50!

then, from Eqs.~11!, ~26!, and~27! we obtain

A051, A150,
]

]X
•B~X,x,Q,u!50. ~51!

As a consequence, we see that for solenoidal flow fields
constitutive equation presents three important features:

~a! The microscale mean particle velocityv̄ coincides
with the mean fluid velocityū @cf. Eqs.~21!, ~35!, and~42!#
and therefore the ballistic velocity vanishes, i.e.,vb50.

~b! From its definition~36!, the particle drift velocity van-
ishes identically, i.e.,vd50.

~c! From its definition~37!, the diffusivity has zero diver-
gence, i.e.,“•ds50. In addition, as we will see in the fol
lowing section,ds is equal to one half the long-time growt
rate of the mean square displacement of the tracer par
from its average position and therefore coincides with
self-diffusivity.

Consequently, the constitutive relation for the flux of pa
sive tracers in solenoidal flow fields reduces to

j̄ 5
1

e
ū2ds

•“ c̄. ~52!

Rewriting our results in dimensional form, we may co
clude that the coarse-grained concentration fieldc̄(r ,t) of
Brownian tracers convected by and diffusing in a nonhom
geneous and nonstationary fluid flow fieldU(r ,t) satisfies
the Fokker-Planck equation,

] c̄

]t
1“•J50, ~53!

with the following constitutive relation for the coarse
grained dimensional particle fluxJ(r ,t):

J5VEc̄2Ds
•“ c̄. ~54!

HereVE5eU0vE is the Eulerian mean particle velocity,
6-5
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VE~r ,t !5V̄~r ,t !2F ]

]r2
•DT~r ,r2 ,t !G

r25r

, ~55!

where V̄5U0v̄ is the microscale mean particle velocit
D(r1 ,r2 ,t)5(U0,)d(X1 ,X2 ,Q) is the cross diffusion dy-
adic ~45!, while the diffusivity Ds(r ,t)5(U0,)ds(X,Q) is
defined as

Ds~r ,t !5D0d* 5D0I1D~r ,r ,t !. ~56!

V. LARGE PECLET NUMBER LIMIT

In this section, for the sake of brevity, the dependence
the macrovariablesX and Q is not explicitly indicated, al-
though it is always implicitly assumed. When Pe@1, the
solution of Eq.~27! for the B field can be written as

B~z,u8!5^G~z2x,u82u,!ũ~x,u!A0~x,u!&, ~57!

where, HereG(z2x,u82u) is the propagator of Eq.~27! for
large Peclet number, satisfying the following equation:

]G

]u
1Pe

]

]x
•~uG!5Ped~z2x!d~u82u!, ~58!

therefore denoting the probability that a tracer, which at ti
u is located atx, is found atz at timeu8.u. Note that, since
the process is locally random~i.e., stationary in time and
homogeneous in space!, G depends on the differencesz2x
andu82u. Substituting Eq.~57! into Eq.~37! for Pe@1, we
see that the diffusivity tensor can be expressed as the fol
ing time integral:

ds5E
0

`

f~u!du. ~59!

Heref(u82u) is the average covariance of the velocity flu
tuations at the points occupied by the tracer~and fluid as
well! particle at the timesu and u8.u ~see, for example
Monin and Yaglom@1#, Mauri @13#!,

f~u82u!5E ^ũ~z,u8!G~z2x,u82u,!ũ~x,u!&0dz.

~60!

Here the brackets denote the average of any quantityh(x,u)
over the localx andu variables, weighted upon the probab
ity to find a tracer particle at that location and at that tim
i.e.,

^h&05^hA0&5E E h~x,u!A0~x,u!dxdu, ~61!

and therefore it coincides with the ensemble average, du
the assumption that the process is locally ergodic. Equat
~58!–~60! show clearly that for large Pe, as bothG andu are
O(1) quantities, the effective diffusivity is proportional t
V0, i.e., to Pe. At this point, consider that the product

A0
(2)~x,z,u,u8!5G~z2x,u82u,!A0~x,u! ~62!
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is the leading-order joint microscale probability that t
tracer particle is located at positionx at time u and atz at
time u8. Consequently, Eq.~60! can be written as

f~u82u!5E E ũ~x,u!ũ~z,u8!A0
(2)~x,z,u,u8!dxdx8du,

~63!

which is identical to the Lagrangian velocity autocorrelati
function defined in Eq.~4!,

f~u82u!5^ũ~x,u!ũ~z,u8!&0 , ~64!

wherez is the position of a tracer~and fluid! particle at time
u8, provided that at timeu,u8 it is located atx. Clearly, the
identification off with the Lagrangian velocity autocorrela
tion function defined in Eq.~4! holds only whenũ in Eq. ~4!
is a microscale time.

Now, since at the microscale our process is stationary,
can apply the microscale reversibility property~otherwise
called principle of detailed balance!,

f~X,Q,u!5f~X,Q,2u! ~65!

to obtain Onsager’s relation~see de Groot and Mazur@27#!,
showing that bothf and ds are symmetric tensors. Again
note that the Lagrangian autocorrelation function depends
the differenceu2u8, due to the assumption that the proce
is stationary~and homogeneous! at the microscale. Now, de
note,

z̃~x,u!5E
0

u

ũ@z~u8!,u8#du8, ~66!

as the difference between the position of the test particle
time u and its average position~i.e., the position that the tes
particle would have, had it moved with the average veloc
v̄0), with z(u50)5x and z̃(u50)50. Therefore, consider-
ing that

ũ~x,u!5
dz̃

du
~x,u!, ~67!

substituting Eq.~66! into Eqs.~59!, and~64!, we obtain

ds5 lim
u→`

K dz̃

du
z̃L

0

5 lim
u→`

1

2

d

dt
^z̃• z̃&0 , ~68!

where the last equality stems from the fact that the dyadicds

is symmetric@and, in any case, its antisymmetric part do
not play any role in the Fokker-Planck equation~38!#. Equa-
tion ~68! reveals thatds equals one half the long-time growt
rate of the mean square displacement of a tracer~and fluid!
particle from its mean position and hence, by definition,
coincides with the particle~and fluid! self-diffusivity dyadic.

Note that when the flow field is solenoidal, the solution
the advection equation~58! is

G~z2x,u82u!5d~z2x!d~u82u!. ~69!
6-6
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Substituting Eq.~69! into Eq. ~57!, with A051, we obtain

B~x,u!5E
0

u

ũ~z,u8!du85 z̃~u!, ~70!

and sinceds5^ũ•B&, we obtain again Eq.~68!.
Now we can include in this treatment the effect of

Brownian movement since, for Pe@1, it is superimposed to
and independent of the advection of the flow field. In fa
denoting bydzB /du the Brownian velocity, that is, the dif
ference between the instantaneous tracer velocity,dz/du,
and the fluid velocityu, we know that~Kubo et al. @28#!

K dzB

du
~x,u!G~x2x8,u2u8!

dzB

du
~x8,u8!L

0

5Id~x2x8!d~u2u8!. ~71!

Therefore, considering that the Brownian motion is uncor
lated with the velocity field~and its fluctuations, as well!, we
see that Eq.~59! is still valid, provided that the Lagrangia
correlation function~64! is referred to the tracer velocit
fluctuationsdz̃/du, instead of the fluid velocity fluctuation
ũ, i.e.,

f~u2u8!5K dz̃

du
~x,u!

dz̃

du
~z,u8!L

0

. ~72!

Therefore, we obtain again Eq.~68!, showing that, when the
Brownian movement is uncorrelated with the velocity fie
the effective diffusivity can still be interpreted as one half t
long-time growth rate of the mean square displacement
tracer from its mean position.

Tracer transport as a random process

Here we intend to show that, in agreement with St
tonovich ~see Kuboet al. @28#!, the same Fokker-Planc
equations~53!–~56! could be obtained, in the limit Pe@1,
assuming that the trajectoryr (t) of any tracer particle is a
random variable satisfying the following generalized nonl
ear Langevin equation:

dr

dt
~r ,t !5V̄~r ,t !1Ṽ~r ,t !. ~73!

Here V̄(r ,t) is a smoothly varying mean tracer velocit
while Ṽ(r ,t) is its random component, which is describ
through the following white stochastic process:

^Ṽ~r ,t !&050, ~74!

^Ṽ~r1 ,t !Ṽ~r2 ,t1Dt !&052DT~r1 ,r2 ,t !d~Dt !, ~75!

with the angular brackets indicating ensemble averaging
D(r1 ,r2 ,t) denoting~by definition! the time integral of the
Lagrangian velocity cross correlation dyadic. In fact, in
grating Eq.~73! for a short time intervalDt, we obtain
06630
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Dr5r ~ t1Dt !2r ~ t !

5V̄~r ,t !Dt1E
t

t1Dt

Ṽ@r ~ t1!,t1#dt11o~Dt !, ~76!

where we have considered thatV̄ changes in time much
slower thanṼ. Now expand

Ṽ@r ~ t1!,t1#5Ṽ@r ~ t !,t1#1Dr1•
]

]r
Ṽ@r ~ t !,t1#1o~Dt !,

~77!

where

Dr15r ~ t1!2r ~ t !5E
t

t1
Ṽ@r ~ t !,t2#dt2 . ~78!

Consequently, we can define the mean Lagrangian par
velocity VL , and the particle self-diffusivityDs as

VL~r ,t !5 lim
Dt→0

^Dr &
Dt

5V̄~r ,t !1F ]

]r1
•D~r1 ,r ,t !G

r15r

~79!

and

Ds~r ,t !5
1

2
lim

Dt→0

^~Dr !2&
Dt

5D~r ,r ,t !. ~80!

These quantities constitute the convective and diffusive p
of the particle flux appearing in the Fokker-Planck equat
~53!, with

J5VLc̄2“•~Dsc̄!, ~81!

where the Lagrangian mean particle velocity is related to
Eulerian counterpart,VE , through the relation@cf. Eqs.
~47!–~49!#

VL5VE1“•Ds. ~82!

Therefore, we may conclude that in the limit Pe@1 the
convection-diffusion equation~53! is equivalent to the Stra
tonovich nonlinear stochastic process~73!–~75!. In particu-
lar, it means that~a! the smoothly varying mean tracer ve
locity V̄ appearing in the random process is the microsc
mean tracer velocity~which in turn is the sum of the mea
fluid velocity and the ballistic tracer velocity!; ~b! the effec-
tive diffusivity Ds appearing in the Fokker-Planck equatio
is a self-diffusion dyadic, as it equals the time derivative
the Lagrangian velocity autocorrelation function. An iden
cal conclusion was reached recently@29# for the constitutive
relations of the volumetric flux of a suspension of rigid pa
ticles immersed in a viscous fluid.

VI. CONCLUSIONS AND COMMENTS

The main result of this work is that the coarse-grain
concentrationc̄ of Brownian tracers convected and diffusin
6-7
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in a nonhomogeneous, nonstationary fluid flow field satis
the Fokker-Planck equation@cf. Eqs.~53!–~56!#,

] c̄

]t
1“•J50, ~83!

with the following constitutive relation for the coarse
grained dimensional particle fluxJ:

J5VEc̄2Ds
•“ c̄. ~84!

HereDs is the effective diffusivity dyadic, defined as

Ds~r ,t !5D0I1D~r ,r ,t !, ~85!

whereD5D0d indicates the cross-diffusivity tensor~45!.
The Eulerian mean tracer velocityVE appearing in the

convective term of the constitutive relation~84! is equal to
the sum of the microscale mean tracer velocityV̄(r ,t) and
the tracer drift velocityVd,

VE~r ,t !5V̄~r ,t !1Vd~r ,t !. ~86!

In turn, the microscale mean tracer velocity is the sum of
mean fluid velocity and the ballistic tracer velocity,V̄5Ū
1Vb, the latter accounting for the nonuniform tracer conce
tration at the microscale. Conversely, the tracer drift veloc
is equal to the spatial derivative of the cross-diffusivity te
sor D, i.e.,

Vd~r ,t !52F ]

]r2
•DT~r ,r2 ,t !G

r25r

. ~87!

In the limit of large Peclet numbers,Ds is also equal to the
time integral of the Lagrangian velocity autocorrelation d
adic ~75!,

Ds~r ,t !5E
0

`

^Ṽ~r1r 8,t1t8!Ṽ~r ,t !&0dt8, ~88!

where the brackets indicate ensemble average,Ṽ5V2V̄ is
the tracer velocity fluctuation around the microscale me
tracer velocity, whiler1r 8 is the position of the tracer a
s.

A
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time t1t8, assuming that at timet it is located atr . There-
fore, the tracer drift velocity can be written in the manner
Stratonovich as follows:

Vd~r ,t !52E
0

`

^Ṽ~r1r 8,t1t8!@“•Ṽ~r ,t !#&0dt8. ~89!

We may conclude that the flux of passive tracers can
expressed through a Fickian constitutive relation, charac
ized by an effective diffusivity and an Eulerian mean trac
velocity, the latter being equal to the sum of the mean fl
velocity, the ballistic tracer velocity, and the particle dr
velocity. As we see from its definition~42!–~43!, the ballistic
velocity is nonzero whenever the concentration field is n
uniform at the microscale, irrespective of whether the flo
field is homogeneous at the macroscale. On the contrary
drift velocity takes into account the coupling between t
nonsolenoidal character of the flow field and its nonhomo
neity at the macroscale. Therefore, as it vanishes when
the flow field is homogeneous at the macroscale, the tra
drift velocity is structurally different from the ballistic trace
velocity. So, for example, in the flow of a compressible flu
through a random but statistically uniform porous mediu
we find a nonzero ballistic tracer velocity and a drift veloc
that is identically zero. An identical problem was studied
Shapiro and Brenner@19#, who considered chemically reac
ing solute particles dispersed in a fluid flowing through
porous medium.

Finally, we should note that, as we have mentioned in
Introduction, the nonsolenoidal character of the flow field
not necessarily due to the fluid compressibility. In fa
particle-particle interactions and particle inertial forces c
cause the particle velocity to differ from the local fluid v
locity, so that the particle velocity field can be nonsolenoid
even when the fluid is incompressible. Therefore, the res
of this work can find wider applications than the transport
passive tracers in compressible fluid flow. For example,
volumetric flux of concentrated viscous suspensions has b
recently derived by Mauri@29#, finding results that are very
similar to those obtained here. In particular, even in that c
we see that the motion of each suspended particle is a
dom process satisfying a nonlinear Langevin equation in
manner of Stratonovich, where the fluctuating term is d
scribed through the cross-diffusivity tensor.
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