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Heat and mass transport in nonhomogeneous random velocity fields
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The effective equation describing the transport of passive tracers in nonsolenoidal velocity fields is deter-
mined, assuming that the velocity field(r,t) is a function of both positiom and timet, albeit remaining
locally random. Assuming a strong separation of scales and applying the method of homogenization, we find
a Fickian constitutive relation for the coarse-grained particle flux, as the sum of a convecti\)éd;arand a
diffusive term,—Ds- Vc, whereVg is the Eulerian mean tracer veIoci&,the average particle concentration,
andD? the effective diffusivity. The latter can be written B§(r,t) =Dyl + D(r,r,t), whereDy, is the molecu-
lar diffusivity, | the unit dyadic and(r,r,,t) the cross diffusion dyadic. Conversely, the Eulerian mean
velocity Vg(r,t) is the sum of the microscale mean tracer velodityr,t) and a particle drift velocity,
Vd(r,t)=—[(ﬁ/ﬁrz)'DT(r,rz,t)]rzzr, which depends on the nonhomogeneity of the velocity field at the
macroscale. The microscale mean particle velocity, in turn, is the sum of the mean fluid velocity and the
ballistic tracer velocity, which is due to the local nonuniformity of the concentration field and is therefore
structurally different from the tracer drift velocity. In the limit of large Peclet numbBfs;oincides with the
self-diffusion dyadic, as it measures the local temporal growth of the mean square displacement of a tracer
particle from its average position. In this case, the motion of a tracer particle is a random process in the manner
of Stratonovich, where the smoothly varying mean tracer velocity equals the microscale mean tracer velocity
and the fluctuating term is described through the cross diffusion dydic,r,,t).

DOI: 10.1103/PhysReVE.68.066306 PACS nunerd7.27—i, 47.55—t, 44.10:+i

[. INTRODUCTION and references therginMore recently, this problem was
studied also by Biferalet al. [2] and by Castiglioneet al.

The objective of this paper is to determine the constitutivg 3,4], who analyzed standard and anomalous transport in in-
relation for the heat or mass flux in random velocity fields.compressible flow using multiscale techniques. Similar re-
Applications can be found in the heat and mass transport isults are found in the related process of convection of a pas-
packed beds or in turbulent mixers where the randomness aive tracer by a fluid flowing through a random medium,
the velocity field is due, in the first case, to the randomeven if, as mentioned above, in this case the randomness of
distribution of the bed particles and, in the second case, tthe flow is provided not by turbulende fact, the fluid flow
the turbulent nature of the flow. As is customary in thesecan very well be laminay but by its interaction with the
cases, our primary interest is not the detailed knowledge oflispersed particleésee Refs[5-13|). Another similar case
the microscale process, but rather its description on a coarse the transport of Brownian particles convected by a nonho-
scale, where we expect that it is described through amogeneous laminar flow field, where, again, an effective, so
effective-medium equation and constitutive relation in termscalled Taylor-Aris, diffusivity arises as the result of the in-
of effective parameter&such as the effective heat and massteraction between the molecular diffusion of the particles and
diffusivities), which depend on the global characteristics ofthe nonhomogeneity of the flow fieldee Refs[14-17).
the microscale velocity field. In this work, we will remove the assumptions that the

Previously, this problem has been studied for solenoidaflow field is solenoidal and that it is macroscopically homo-
velocity fields, assuming that the velocity field is locally ran- geneous and stationary. Nonsolenoidal velocity fields not
dom and macroscopically both uniform and stationary. Inonly refer to compressible fluids, although this is the case
this case, the transport of passive tracers has been showntteat we will consider here; they also apply to suspensions of
be described through a Fickian constitutive relation, as th@articles where either particle-particle interactions or particle
sum of a convective part, characterized by the average fluithertial forces cause the particle velocity to differ from the
velocity, and a diffusive component, with an effective diffu- local fluid velocity. Nonsolenoidal flow fields were studied
sivity that depends on the microscopic, local characteristic oby Vergassola and Avellaneda8], who found that in this
the flow field. For example, when the randomness of thecase the mean tracer velocity differs from the mean fluid
velocity field is due to turbulence, the average tracer velocityelocity by a term that accounts for what they call ballistic
equals the fluid mean velocity, while the effective, or eddy,transport, due to the nonuniformity of the concentration field
diffusivity is the time integralwhen it is finitg of the fluid  at the microscale. An identical phenomenon is observed also
velocity autocorrelation functiofsee Monin and Yaglori], in the transport of chemically reacting solute tracers, as

shown by Shapiro and Brenngt9] and Mauri[20] (see the
following section. More important is our other assumption
*Electronic address: r.mauri@ing.unipi.it that the flow field is macroscopically nonhomogeneous and
URL: http://docenti.ing.unipi.it- d9185/index.htm nonstationary, a condition that can be due, for example, to
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the characteristics of the unperturbed flow field, as in thevherer=V-U, we see that fluid compressibility plays the
case of time-dependent turbulent shear flow, or to the norrole of a first-order chemical reaction. Therefore, when the
uniform properties of the random flow field, as in the flow random velocity field is stationary in time and homogeneous
through a porous medium with varying porosity, so that wein space, mass transport in compressible flow fields is a par-
can describe conditions that are more readily found in practicular case of the transport of chemically reacting tracers
tical applications (see Shapiro and Brenngt9], Mauri [20], Edwardset al.
The content of this work is organized as follows. After [22]).

formulating the problem and establishing the basic scaling Here, we assume that the mean velocity field has charac-
(see Sec. ) in Secs. Il and IV we describe the method of teristic lengthL and characteristic timeg =L2/D,, while the
solution and derive the effective constitutive equation. Thevelocity autocorrelation function decays over a length scale
case of large Peclet number is studied in detail in Sec. W=eL and time scaler,=¢?/Dy=€?r_, with e<1. There-
while, eventually, in Sec. VI, the main results of this work fore, the geometry of the problem is characterized by two

are summarized and discussed. length scales{ andL, and two time scales;, and r_, indi-
cating the typical correlation length and time of the velocity
Il. GOVERNING EQUATION AND SCALING field at the microscale and macroscale, respectively. In the

. ) . ) _ following, we will assume that ReO(1), where Pe
Consider the convection of Brownian tracers in a velocity— ¢y, /D, is the microscale Peclet number. This assumption
flow field U(r,t). Neglecting inertia and all interactions means that convection and diffusion balance each other at

among the particles, the tracer molar concentratifmt) at  the microscale and therefore convection dominates diffusion
location r and timet satisfies the following convection- 5t the macroscale, as PeLU,/Do=O(1/e).

diffusion equation: Clearly, this problem, in principle, could be solved ex-
P actly, provided that the velocity field were known. In reality,
2 4V (Uc)—DyV2c=0, 1 the velocity field is knoyvn only sta.t|st|cally and, in addltlon,.
at (Ue)=Do @) we are not interested in the detailed knowledge of the mi-

_ o croscale process, but rather in its description on a coarse
where Dy is the tracer molecular diffusivity, to be solved scale. In fact, the macroscopic effective equations describing

with a given initial condition, the motion of the test particle will be determined using a
multiple-scale perturbation analysis otherwise denoted as
c(r,0)=co(r). (20 method of homogenizatiofBensoussaet al. [6], Sanchez-

Palencigd 23]). The main idea is that the effective equation is
expected to arise naturally from E@l) through a regular
perturbation analysis in terms of the small parameter
={/L. Accordingly, each quantity can be represented sepa-

rately in terms of a microscale coordinate with [r|

The velocity fieldU(r,t) is nonsolenoidali.e., the fluid is
compressiblg with known statistical properties. In particu-
lar, it has the mean value

(U(rD)o=U(r.t)=Uou(r.t) © =0(¢) and of a macroscale position vector with |r|
and Lagrangian velocity autocorrelation function =O(L)=0(¢/¢). In particular, the gradient operat®r can
be expanded in terms @f as
(O(r,t)0(r+7,t+7))o=U2f(r,t,1), (4) 3 3
{V=—+e—, (6)

where U, denotes a typical value of the fluid velocity, the 2

bracket; |nd|c§te enfgmble a"erf"“ge“'u‘L_’ I the velocity \here x=r/L andx=7/¢ are nondimensional macroscale
fluctuation, whiler +r is the position, at timé¢+t, of the  and microscale variables, respectively.

and (4) indicate that the velocity field is not stationary in
time, nor homogeneous in space. Clearly, although the La- 29 9 d , 9
grangian velocity autocorrelation can be extracted from nu- Dy T GEWL €50, @)

merical simulations of fluid flows in turbulent mixers or in

packed beds, a direct experimental measurement of this fungrhere®,, ®,, and § measure time at the macroscale, me-

tion is not feasible, in general. However, it should be re-spscale, and microscale, respectively.

marked that, since the Eulerian and Lagrangian probablllty In the f0||owing, we will assume that any fUﬂCtidl(lX,@)

distribution functions of the velocity fluctuations are relatedjs ergodic, that is, it§microscalé volume and time integral

to one anothe(see Ref[21]), it is possible to determine the coincides with its ensemble average. This assumption derives

Lagrangian velocity autocorrelation function from its Eule- from the fact that the fluctuations of the velocity field result

rian counterpart, which is more easily measurable. from a very large number of interactions and therefore, ac-
Rewriting the governing equatiofl) as cording to the central limit theorem, they must be locally

random, i.e., homogeneous in space and stationary in time at

the microscalésee comments in Reff24]). In the different,

Jc
—_— . f— 2
+U-Vetre=DoV7e, ® albeit related, context of suspension flow, Marchioro and Ac-

ot
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cO(X,x,0,0)=Ay(X,X,0,0)c(X,0), (13

of equations describing the particle motions is deterministic,

the particle displacements present a Gaussian distributiop;p, ?(X 0)=co(X), while Ay(X,x,0,6)

and therefore constitute a random process.
Substituting Eqs(6) and(7) into Eg. (1), we obtain

ac je oo 3 J
— te——+—+Pe—-(UC)+e— -
€30, €90, aa Gax (U Tezx-(Uc)
J . d\? o
o eﬁ_X c, (8)

where u(X,x,0,0)=U/U, represents the nondimensional
fluid velocity, with® =(©®,,0,). This governing equation is

subjected to the initial conditiof®),

lim c(e,X,x,t)=cq(X), 9
t—0

where we have assumed that the initial concentratipis a

smooth function of position. Generalization to the case

where ¢, depends orx, and therefore ore, does not add

representing the
microscale probability function, can be determined solving
Eq. (11), with initial conditionAy(X,x,0,6=0)=1. For so-
lenoidal flow fields, this problem admits the trivial solution
Ap=1. Note thatA, is normalized as

(Ao(X,x,0,0))=1, (14
where the bracket indicates microscale averaging both in
space and in time for any functidr{X,x,0, ), i.e.,

(f)(x,@):f f f(X,x,0,6)dxdé. (15
In addition, using the normalization condition of to-
gether with the following additional constraints, which will

arise spontaneously later,

(c"9(X,x,0,6))=0, (16)

anything to our physical understanding of the phenomenonwe find the normalization condition

In the following, we will apply a multiple scale analysis
to derive the effective equations satisfied by the system. The

(c(X,x,0,0))=(cO(X,x,0,0)=c(X,0). (17

key idea here is to expand the probability distribution as the

following power series:
c(6,X,%,0,0)= > €cM(X,x,0,6), (10
n=0

substitute it into the governing equatié® and then collect
equal powers of.

Although these additional assumptions are not necessary to
the development of our analysis, they do remove the degree
of arbitrariness in the definitiofl.0) of ¢ and greatly sim-
plify our results. In any case, although these conditions are
not unique, any other condition that we may choose in place
of Eq. (17) would lead, eventually, to the same final results
(Mawuri, 1992.

When, as in this case, some of the leading-order problems

turn out to be ill posed, this multiple scale technique has to
be applied with special care. Similar problems have been
encountered in the past, and were solved either by “subtract-
ing” the dominant term from the governing equation and

“summing” it back at the endRubinstein and Mauril11]),
“warping” time scales and length scalg#/auri [20]), or

expanding the independent variables in time as well as in

space(see Maur{13], Mazzino[26], and references thergin

Here, as indicated in the expressiah, we adopt the last of

these methods.

IIl. MULTIPLE SCALE ANALYSIS

A. Leading-order terms

At leading,O(1) order, substituting Eq10) into (8), we
obtain

ac® 9 © 9%c®
+ . - =
T P% (uct™) e 0, (11
with initial condition (9),
lim c©@(X,x,0,8)=cy(X). (12)

0,0—0

The solution of Eq(11) is trivially,

B. First-order terms

At first, O(€) order, we obtain

gctV) a 92c®
= +Peﬁ—x~(uc(1))— P
ac® ] g ac®
=—W1—Pe07~(uc(°))+2&'&—x, (18)
subjected to the initial conditiof®),
lim c®(X,x,0,6)=0. (19

0,0—0

Now, apply the solvability condition to Eq18), taking the
volume and time integral over the and ¢ variables and
considering that the left-hand side does not contribute be-
cause the volume integral of the gradient of any locally ran-
dom function is identically zero. Finally, we obtain,

ic g —
Wl =— Pe(& . (VOC), (20)
where
Vo(X,0)=(u(X,x,0,0)Aqs(X,x,0,6)) (21
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is the leading-order mean tracer velocity, that is, the velocity C. Second-order terms
that the suspended p.articléwith the giyen particle distribu- Now we proceed to the secon@(e?) order, obtaining
tion Ap) would have if they moved with the same speed as
the fluid’s. 9c(2) 9 52c2
The main conclusion that we draw from E@1) is that ——+Pe—(uc?®)——
the fluid compressibility determines a nonuniform concentra- a0 X Ix
tion field at the microscale, which, in turn, causes the PR (ONPINEY 9 9 ocD
leading-order mean tracer velocity to differ from the mean = ——————Pe--(ucM)+2—. —
. = 00, 00, X X X
fluid velocity u, defined as
_ 9%c®
u(X,0)=(u(X,x,0,)). (22 +W’ (30
If fact, Eq. (21) can be rewritten as
subjected to the initial conditio(®),
Vo=Uu+Vv, (23)
lim c®(X,x,0,6)=0. (31
where 0,0—0
VB(X,0)=(u(X,x,0,0)[Ay(X,x,0,0)—1]) (24 Applying the solvability condition to this equation, i.e.,
integrating over thex and # variables, we obtain
coincides with the ballistic velocity, as is defined by Vergas-
sola and Avellanedd18]. This result is identical to the Jc. 9 _
leading-order term obtained by Shapiro and Brerjt6f and —=—Pe_--j, (32
Mauri [20], who studied the transport of chemically reacting 90, 28
tracers, with the reaction speed taking the place of the fluid
velocity divergencésee Eq.5) and related commenits where
Now let us consider Eq18), assuming that its solution o
can be expressed as - 1 Jdc
j(X,®)=—P—ea—X(X,G))Jr(uc(l)}(X,@) (33

c@(X,x,0,0)=A(X,x,0,0)c(X,0)

9 _ is the fluctuation-induced particle flux. Substituting E2p)
- —[B(X,x,0,0)c(X,0)]. (25 into Eqg. (33) and rearranging, we can express the particle
X
flux as follows:

Substituting Eq(20) and(25) into Eq. (18), we see that the _

function A,(X,x,0,0) and the vector functioB(X,x,0, 6) ~ b, g s 9C
satisfy the following problems: j=(vi+vie—d TaX (34
dA, J PAL 9Ag J J Here, V! is the velocity that the suspended particles, with the
—+Pe—--(UA}))———=——-—+—Pe_--|B-—_u . . Lo .
a0 d Ix2 a0 4 X ax given particle distributionA;, would have if they moved
with the same speed as the fluid’s,
dAg (26)
— e/ =,
o oX VE(X,0)=(uA,). (35
and Also, v and d® are fluctuation-induced tracer drift velocity
) and diffusivity, respectively, which, considering the normal-
B aJ 7B - Ao ization condition(29), can be written as follows:
—+Pe—--(uB)— — =PalA,—2——, (27)
a0 X IX2 X
J ~
~ d: _— —_— = - —_—
whereU(X,x,0,6)=u(X,x,0,8) —vy(X,0) is the velocity v <“<ax B)> <“(ax B) > (36)
fluctuation. These equations must be solved with initial con-
ditions and
A(X,x,0,0=0)=0, B(X,x,0,0=0)=0, (29 1 1
S:— . = — Y
d Pe|+<u B) Pe|+<uB>, (37)

and imposing the normalization conditigh?), i.e.,

(A1(X,x,0,0))=0; (B(X,x,0,0))=0. (299  wherel denotes the unit dyadic.
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IV. THE EFFECTIVE EQUATION

Substituting Eqs(20) and (32)—(37) into Eq. (7), we ob-
tain the Fokker-Planck equation,

1% —
j=vic——-(d%), (47)

wherev, is the Lagrangian mean particle velocity, which is

L2 gc J related to its Eulerian counterpart through the relatipn
— —+Pe-j=0, (39 =vg+V-d®. Therefore, considering that
Do at ' ox ) E g
with the following constitutive rel_ation for the coarse- diD(X’X): ;D(y,x) + ;D(x,z) ., (48
grained non-dimensional particle flyxx,®), X y y=Xx z 2=x
o 1 do 1 1 _ we can express the Lagrangian mean particle velocity as
j=———+<u —c@4c® >=—voc+T. (39)
Pe oX € € 1 d
VL(X,0)=—-v(X,0)+ W-d(xl,x,) . (49
Therefore we obtain € 1 X, =X
. Jac In particular, when the flow field is solenoidal,
j=vgc—d® —, (40
E IX P g
_ ] ) ) — -u=—-u=0, (50
wherevg is the Eulerian mean particle velocity, X X
1_ then, from Egs(11), (26), and(27) we obtain
ve=_v+ Ve, (41)

J
_ o ) Ao=1, A;=0, —=-B(X,x,0,6)=0. (51
denoting the sum between the fluctuation-induced particle X

drift velocity \ﬁ [see EQ.(36)] and the microscale mean

: i As a consequence, we see that for solenoidal flow fields the
tracer velocityv, with

constitutive equation presents three important features:
VeVt vy =(U(Ag+ €Ay)). (42) .(a) The micro§cale m.ein particle velocity coincides
with the mean fluid velocity [cf. Egs.(21), (35), and(42)]
The microscale mean tracer velocity can also be written asand therefore the ballistic velocity vanishes, = 0.
(b) From its definition(36), the particle drift velocity van-
v=u+Vv®, (43)  ishes identically, i.e.y9=0.

(c) From its definition(37), the diffusivity has zero diver-
wherev®=vg+ eV} is the ballistic tracer velocitjvergassola  gence, i.e.V-d°=0. In addition, as we will see in the fol-
and Avellanedd18]), expressing the difference between the|owing section,d® is equal to one half the long-time growth
microscale mean tracer velocity and the mean fluid velocityrate of the mean square displacement of the tracer particle
due to the nonhomogeneous concentration field at the mirom its average position and therefore coincides with the

croscale. _ o . self-diffusivity.

The particle drift velocity® of Eq. (36) can be rewritten Consequently, the constitutive relation for the flux of pas-
as sive tracers in solenoidal flow fields reduces to

d 0 1 — 1 -
2 X,=X €
2

with (dT)ij =d;; . Here,d(Xy,X,,0) is the following cross- Rewriting our results in dimensional form, we may con-
diffusion dyadic: clude that the coarse-grained concentration figld,t) of

Brownian tracers convected by and diffusing in a nonhomo-
d(X1,X5,0)=(U(X1,x,0,0)B(X,,x,0,0)), (45 geneous and nonstationary fluid flow fiel{r,t) satisfies
the Fokker-Planck equation,
with

Jc
1 —+V.J=0, (53)
dS(x,®)=P—e|+d(x,x,®). (46) ot

. o _ _ _ with the following constitutive relation for the coarse-
Note that, from its definitiori44), the drift velocityv? is due grained dimensional particle fluxr,t):

to macroscale nonhomogeneities and therefore it is structur-

ally different from the ballistic velocitw®, which depends J=Vgc—Ds V. (54)
on microscale nonhomogeneities instead.
The constitutive relatiori40) can also be written as HereVeg=eUyVvg is the Eulerian mean particle velocity,
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is the leading-order joint microscale probability that the
tracer particle is located at positionat time 6 and atz at

— J
VE(r,t)=V(r,t)—[7.DT(r,rz,t)} , (55
time 6’. Consequently, Eq60) can be written as

r2 r=r

where V=U,yv is the microscale mean particle velocity,
D(rq,ro,t)=(Ugf)d(X;,X,,0) is the cross diffusion dy-
adic (45), while the diffusivity DS(r,t) =(Uq€)d5(X,0) is
defined as

f(6'— )= f J u(x, 0)u(z,0") AP (x,2,0,6")dxdx’d6,
(63

which is identical to the Lagrangian velocity autocorrelation

DS(r,t) =Dod* = Dol +D(r,r,1). (56)  function defined in Eq(4),

V. LARGE PECLET NUMBER LIMIT f(0'—60)=(u(x,0)u(z,0"))o, (64)
In this section, for the sake of brevity, the dependence oRwherez is the position of a tracefand fluid particle at time
the macrovariableX and © is not explicitly indicated, al- ¢’ provided that at tim&< 6’ it is located a. Clearly, the

though it is always implicitly assumed. WhenP#, the dentification off with the Lagrangian velocity autocorrela-
solution of Eq.(27) for the B field can be written as tion function defined in Eq4) holds only wherd in Eq. (4)
is a microscale time.

Now, since at the microscale our process is stationary, we
can apply the microscale reversibility propertytherwise
called principle of detailed balange

(57)

where, Herez(z—x, 8" — 6) is the propagator of Eq27) for
large Peclet number, satisfying the following equation:

9G 9 f(X,0,0)=1(X,0,—6)

=g TPe - (UG)=Pes(z—x)5(6" - 6), (58)

B(z,0")=(G(z—x,0"— 6,)U(x,0)Ag(X,6)),

(65)

to obtain Onsager’s relatiofsee de Groot and Maz(i27]),
showing that bothf and d® are symmetric tensors. Again,

therefore denoting the probability that a tracer, which at tirnenote that the Lagrangian autocorrelation function depends on
0 is located ak, is found atz at time §’ > 4. Note that, since grang P

; oy :

the process is locally randori.e., stationary in time and f[he dlﬁerencea &', due to the assumption that the process

h . ' is stationary(and homogeneoust the microscale. Now, de-
omogeneous in spages depends on the differences-x

and @’ — 6. Substituting Eq(57) into Eq.(37) for Pe>1, we note,
see that the diffusivity tensor can be expressed as the follow-
ing time integral:

2(x,0)= f:f;[z(a’),e’]da’, (66)

(59 as the difference between the position of the test particle at

time 0 and its average positiofie., the position that the test
Heref(6’ — 6) is the average covariance of the velocity fluc- Bartlcle would have, had it moved with the average velocity

ds= J:f( 6)dé.

tuations at the points occupied by the tra¢end fluid as
well) particle at the time® and 0’ >0 (see, for example,
Monin and Yaglom1], Mauri [13]),

f(o' — 9)=f (U(z,6")G(z—x,0"— 6,)U(x, 0))odz.
(60)
Here the brackets denote the average of any quanmgityd)

over the locak and ¢ variables, weighted upon the probabil-
ity to find a tracer particle at that location and at that time,

i.e.,

<h>0=<hAo>=ffh(x,a)Ao(x,e)dxda, (61)

Vo), With zZ(#=0)=x andz(#=0)=0. Therefore, consider-
ing that

- d
u(x,0)= d—Z(x,B), (67)

substituting Eq(66) into Egs.(59), and(64), we obtain
G dz. il
AT O_QITOCZ dt<z'z>°’

f— oo

(68)

where the last equality stems from the fact that the dydglic
is symmetric[and, in any case, its antisymmetric part does
not play any role in the Fokker-Planck equati@8)]. Equa-

tion (68) reveals thatl® equals one half the long-time growth

and therefore it coincides with the ensemble average, due Qe of the mean square displacement of a tréaed fluid
the assumption that the process is locally ergodic. Equationsariicle from its mean position and hence, by definition, it

(58)—(60) show clearly that for large Pe, as baghandu are

O(1) quantities, the effective diffusivity is proportional to

V,, i.e., to Pe. At this point, consider that the product

AP(x,2,0,0")=G(z—x,0' — 6,)Ag(X, 6) (62)

coincides with the particléand fluid self-diffusivity dyadic.
Note that when the flow field is solenoidal, the solution of
the advection equatio(bd) is

G(z—x,0'—0)=6(z—x)5(6"—0). (69
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Substituting Eq(69) into Eqg. (57), with Ag=1, we obtain Ar=r(t+At)—r(t)
0_ ~ _ t+At_
B(x,0)=f u(z,0')de’ =z(0), (70) =V(r,t)At+f VIr(ty),t;]dt; +o(At), (76)
0 t
and sinced®=(u- B), we obtain again Eq68). where we have considered thet changes in time much

Now we can include in this treatment the effect of aslower thanV. Now expand
Brownian movement since, for Bel, it is superimposed to
and independent of the advection of the flow field. In fact, - Y J
denoting bydzg/d# the Brownian velocity, that is, the dif- VIr(ty) ] =VIr(t),t]+Ary- Ev[r(t)’tlho(m)’
ference between the instantaneous tracer velodinyd 6, (77)

and the fluid velocityu, we know that(Kubo et al. [28])
where

<dZB< DG(x-X,0- ') 2 (x',0') :
— (X, X—X',0—0")—(x', 1~
a0 a0 0 An=rt)-ro= [ VoLl (79
=18(x—x")8(0—6"). (72) _ _ _
Consequently, we can define the mean Lagrangian patrticle
Therefore, considering that the Brownian motion is uncorrevelocity V|, and the particle self-diffusivitp® as
lated with the velocity fieldand its fluctuations, as wellwe

see that Eq(59) is still valid, provided that the Lagrangian o (Ar) —V(r b+ 9
correlation function(64) is referred to the tracer velocity Vi A':TO At vy ary Drz.r.b) o
~ =
fluctuationsdz/d @, instead of the fluid velocity fluctuations (79
u, ie.,
and
dz dz 2
o= Lo L 1 {((An?)
f(6-6") <d0(x’0)d0(z’0 )>0- (72 D(r,H)=3 lim =——=D(r,r1). (80)
At—0

Therefore, we obtain again E(8), showing that, when the 1,050 qantities constitute the convective and diffusive parts

Brownian movement is uncorrelated with the velocity field : Lo ;
. o ! . 'of the particle flux appearing in the Fokker-Planck equation
the effective diffusivity can still be interpreted as one half the853) Wﬁh PP g g

long-time growth rate of the mean square displacement of
tracer from its mean position. J=V, c—V-(D%), (81)

Tracer transport as a random process where the Lagrangian mean particle velocity is related to its

Here we intend to show that, in agreement with stra-Eulerian counterpartVe, through the relationcf. Egs.
tonovich (see Kuboet al. [28]), the same Fokker-Planck (47)—(49)]
equations(53)—(56) could be obtained, in the limit Pel, _ NS
assuming that the trajectonft) of any tracer particle is a Vi=VetV.-D~ (82
random variable satisfying the following generalized no”“n'Therefore, we may conclude that in the limitsPe the

ear Langevin equation: convection-diffusion equatiotb3) is equivalent to the Stra-
dr - B tono_vich nonlinear stochastic proce(§’§_)—(75). In particu-
a(r,t)=V(r,t)+V(r,t). (73)  lar, it means thata) the smoothly varying mean tracer ve-
locity V appearing in the random process is the microscale
Here V{(r,t) is a smoothly varying mean tracer velocity, mean tracer veIocitWhich i_n turn is the sum of the mean
DS i ~™" fluid velocity and the ballistic tracer velocity(b) the effec-
while V(r,t) is its random component, which is describedjye diffusivity DS appearing in the Fokker-Planck equation

through the following white stochastic process: is a self-diffusion dyadic, as it equals the time derivative of
- the Lagrangian velocity autocorrelation function. An identi-
(V(r,1))o=0, (74 cal conclusion was reached recer{t3g] for the constitutive

B 5 relations of the volumetric flux of a suspension of rigid par-
(V(ri,t)V(rp,t+At))g=2D"(ry,r,,t) 8(At), (75  ticles immersed in a viscous fluid.

with the angular brackets indicating ensemble averaging and VI. CONCLUSIONS AND COMMENTS

D(rq,r,,t) denoting(by definition the time integral of the _ ) ) )
Lagrangian velocity cross correlation dyadic. In fact, inte- The main result of this work is that the coarse-grained
grating Eq.(73) for a short time interval\t, we obtain concentratiorc of Brownian tracers convected and diffusing
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in @ nonhomogeneous, nonstationary fluid flow field satisfiesime t+t’, assuming that at timeit is located atr. There-
the Fokker-Planck equatidief. Egs.(53)—(56)], fore, the tracer drift velocity can be written in the manner of
— Stratonovich as follows:

ac
—4+V.J=0, (83

ot Va(r,t)=— jx<\~/(r+r’,t+t’)[v~\~/(r,t)])0dt’. (89
0

with the following constitutive relation for the coarse-
grained dimensional particle fluk We may conclude that the flux of passive tracers can be

expressed through a Fickian constitutive relation, character-
ized by an effective diffusivity and an Eulerian mean tracer
velocity, the latter being equal to the sum of the mean fluid
velocity, the ballistic tracer velocity, and the particle drift
velocity. As we see from its definitiof#2)—(43), the ballistic
s velocity is nonzero whenever the concentration field is non-
D(r,t)=Dol +D(r,r,1), (85 uniform at the microscale, irrespective of whether the flow
field is homogeneous at the macroscale. On the contrary, the
The Eulerian mean tracer velociye appearing in the drift veloci'ty takes into account the_ coupling between the
convective term of the constitutive relatid84) is equal to no_nsolen0|dal character of the flow fleld_and Its nonhomoge-
) — neity at the macroscale. Therefore, as it vanishes whenever
the sum of the microscale mean tracer velodffr,t) and  the flow field is homogeneous at the macroscale, the tracer

J=Vgc—Ds-Ve. (84)

Here D® is the effective diffusivity dyadic, defined as

whereD=Dd indicates the cross-diffusivity tens¢45).

: od

the tracer drift velocity®, drift velocity is structurally different from the ballistic tracer
= q velocity. So, for example, in the flow of a compressible fluid
Ve(r,)=V(r, ) +Vi(r,t). (88 through a random but statistically uniform porous medium,

e find a nonzero ballistic tracer velocity and a drift velocity
, ) . — hat is identically zero. An identical problem was studied by
mean fluid velocity and the ballistic tracer velociy=U  ghanirg and Brenndtl9], who considered chemically react-
+V?, the latter accounting for the nonuniform tracer Concenyng solute particles dispersed in a fluid flowing through a
tration at the microscale. Conversely, the tracer drift velocityporous medium.
is equal to the spatial derivative of the cross-diffusivity ten- Finally, we should note that, as we have mentioned in the
sorD, i.e., Introduction, the nonsolenoidal character of the flow field is
9 not necessarily due to the fluid compressibility. In fact,
—~DT(r,r2,t)} ) (87) particle-particle interactions and particle inertial forces can
F. ry=r cause the particle velocity to differ from the local fluid ve-
locity, so that the particle velocity field can be nonsolenoidal
In the limit of large Peclet numberB? is also equal to the  even when the fluid is incompressible. Therefore, the results
time integral of the Lagrangian velocity autocorrelation dy-of this work can find wider applications than the transport of
adic (79), passive tracers in compressible fluid flow. For example, the
. volumetric flux of concentrated viscous suspensions has been
DS(r,t)=J V(r+rt+t)¥(r,1)edt, (88) r(_acently derived by I_\/Iaurﬁ29], finding _results that are very
0 similar to those obtained here. In particular, even in that case
5 o we see that the motion of each suspended particle is a ran-
where the brackets indicate ensemble aver&gey —V is  dom process satisfying a nonlinear Langevin equation in the
the tracer velocity fluctuation around the microscale meamanner of Stratonovich, where the fluctuating term is de-
tracer velocity, whiler+r’ is the position of the tracer at scribed through the cross-diffusivity tensor.

In turn, the microscale mean tracer velocity is the sum of th

Va(rt)=—
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